
徳島小松島港における生物共生方策 に関する検討会

参考資料 カルシア改質土の施工実績

令和7年2月18日 国土交通省四国地方整備局 小松島港湾·空港整備事務所

表1 浚渫土砂を活用したカルシア改質土等の施工事例

No.	名 称	実行者	施工時期	施工場所	施工数量(m)			浚渫土砂の活用と
					カルシア 改質土	カルシア 人工石	その他 (スラグ人工石)	施工方法・概要
1	東海元浜ふ頭公有水面埋立工事	日本製鉄株式会社 (新日鐵住金株式会社)	2012 年 4 月~5 月 2013 年 4 月~9 月	愛知県東海市	473, 000			埋立地造成 管中混合および落下混合
2	名古屋港鍋田ふ頭航路泊地 (-12m) 浚渫工事	国土交通省中部地方整備局	2012 年 8 月~9 月	愛知県常滑市鬼崎漁港 地先	67, 5 00			埋立地造成 管中混合
3	東予港中央地区岸壁 (-7.5m) 築造工事改良工事	国土交通省四国地方整備局	2017 年 8 月~ 9 月	愛媛県西条市	12, 000			埋立地造成 バックホウ混合・グラブ投入
4	中津港(田尻地区)潜堤試験工事	国土交通省九州地方整備局	2016 年 6 月~ 7 月	大分県中津市中津港	850	10		潜堤 バックホウ混合・グラブ投入
5	姫路市網干地区カルシア浅場実験区造成工事 (その1~その3)	日本製鉄株式会社 (新日鐵住金株式会社)	2015 年 7 月~ 2018 年 9 月	兵庫県姫路市姫路港網干沖	99, 800		34, 000	浅場造成 パックホウ混合・グラブ投入
6	君津西護岸沖浅場造成工事	千葉県漁業協同組合連合会 君津市 日本製鉄㈱(新日鐵住金㈱)	2013 年 5 月~ 2021 年 8 月	千葉県君津市	420, 000			窪地埋戻し、および浅場造成 バックホウ混合・直接投入
7	函館港西防波堤背面盛土造成 (2022年3月現在 8工事合計)	国土交通省北海道開発局	2019 年 6 月~2022 年 3 月	北海道函館市函館港	400, 700	20		防波堤背面盛土 グラブ浚渫・バックホウ混合 (一部落下混合・トレミー管投入)
8	新本牧ふ頭建設工事 (その 13)、(その 14)	横浜市	2021 年 1 月~4 月	神奈川県横浜市中区本牧ふ頭地先	160, 300			潜堤造成 落下混合・グラブ投入

1.目 的 埋立地盤造成 2. 発注者 新日鐵住金 (株) 3. 施工場所 愛知県東海市 東地区 平成24年4月~5月 4. 施工時期 西地区 平成25年4月~9月 東地区 38,000m3 5. 施工数量 西地区 427,000m3

カルシア改質材混合割合:容積混合率25% 6. 配合·材料 浚渫土 :名古屋港浚渫土

> カルシア改質材 :新日鐵住金(株)名古屋製鉄所製造)

q....=30kN/m²(現場)、現場/室内強度比=0.5、不良率25% 7. 設計基準強度

8. 施工方法 管中混合および落下混合

■ 原料土の物理特性(事前混合試験時の平均値)

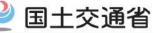
土粒子密度 (g/cm³)	含水比 (%)	液性限界(%)	塑性指数	細粒分含有率 (%)	強熱減量 IL(%)
2.65	122	84.2	49.0	60.1	10.1

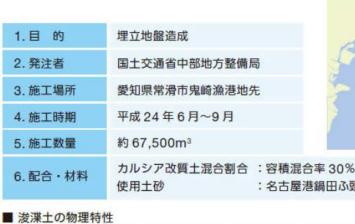
■ カルシア改質材 (3 工事平均値)

■ カルシア改質材の一軸圧縮強さ (西地区工事、28日後室内強度、N=245)

表乾密度	最大粒径
(g/cm ³)	(mm)
2.63	3.8

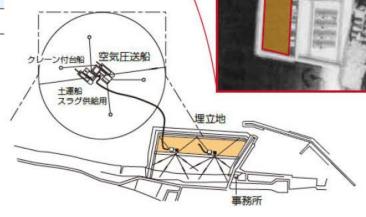
-	平均一軸圧縮強さ (kN/m²)	変動係数	不良率 (%)
	107	0.48	16

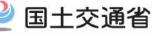



管中混合工法

落下混合工法

| 2 | 埋立用材としての適用等例 名古屋港鍋田ふ頭航路泊地浚渫工事

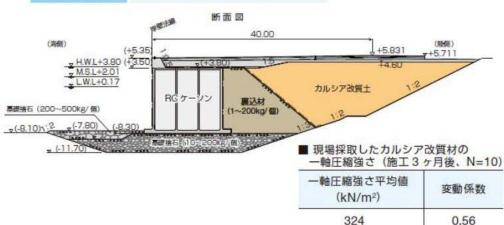




湿潤密度	自然含水比(%)	土粒子密度	細粒分含有率	液性限界
(g/cm³)		(g/cm³)	(%)	(%)
1.681	45.4	2.660	82.1	43.9

7. 施工方法

管中混合

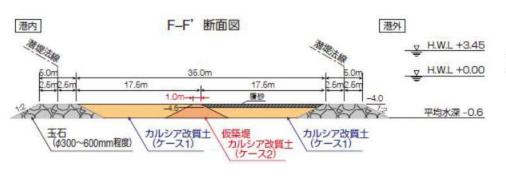


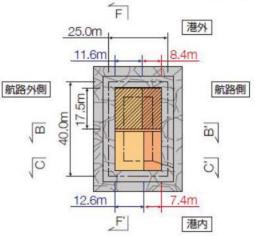
第 3 **埋立用材**としての適用範囲 東予港中央地区岸壁(-7.5m)築造工事

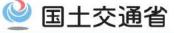


施工状況

カルシア改質土研究会提供資料




施工 4 **着堤材**としての選邦 中津港(田尻地区)潜堤試験工事


1.目 的	カルシア改質土およびカルシア人工石による試験潜堤の造成				
2. 発注者	国土交通省九州地方整備局別府港湾事務所				
3. 施工場所	大分県中津市中津港 (田尻地区)				
4. 施工時期	平成 28 年 6 月~7 月				
5. 施工数量	カルシア改質土 850m³ カルシア人工石 10m³				
6.配合・材料	カルシア改質土混合割合 : 容積混合率 30% 浚渫土 : 中津港浚渫土 カルシア改質材 : 新日鐵住金(株)大分製鉄所製造				
7. 施工方法	バックホウ混合・グラブ投入(カルシア改質土)				

混合状况

1.目 的	姫路市網干海域におけるカルシア改質土による漁場造成	1 1
2. 発注者	新日鐵住金(株)	35m
3. 施工場所	兵庫県姫路市姫路港	土砂処分場
4. 施工時期	平成27年7月~平成30年9月(その1~その3工事実施)	AF
5. 施工数量	カルシア改質土 99,800m²、スラグ人工石 34,000m²	# E02
6.配合・材料	カルシア改質材混合割合: 容積混合率 30% 浚渫土 : 姫路港広畑航路浚渫土 カルシア改質材 : 粒径0-25mm (新日鐵住金 (株) 広畑製鉄所製造)	tos
7. 設計基準強度	$q_{_{UDK28}}$ =28kN/m²(現場強度)、現場/室内強度比=0.5、不良率25%	
8 施丁方法	グラブ浚渫・バックホウ混合(崖壁混合)・グラブ投入	平面図

8. 施工方法 グラブ浚渫・バックホウ混合(岸壁混合)・グラブ投入

■原料土の物理特性	
(3 工事の事前混合試験時の平)	均値)

10 2 - 3 3 3 1 1 1 1						
土粒子密度 (g/cm³)	含水比 (%)	液性限界 (%)	塑性指数	細粒分含有率 (%)	強熱減量 IL(%)	
2.63	255	142	94	98.6	11.8	

■ カルシア改質材 (3 工事平均値)

f-CaO (%)	
3.8	
	f-CaO (%)

■ カルシア改質	材の-	一軸圧縮強さ	、フロー値
(3工事平均、	28 E	後室内強度、	N=74)

平均一軸圧縮強さ (kN/m²)	変動係数	不良率 (%)	フロー値 (cm)
114	0.31	2.7	8.8

87~90m 70~77m マ-2.5m その2工区 被復石 その1工区 カルシア改質士 カルシア改質士 カルシア改質士 サルシア改質士

浅場へのワカメの繁茂

200 6 深級れ選地の埋戻し用材としての適用専例 君津浅場造成工事

1.目的	浅場造成を目的とし、窪地の埋戻し材としてカルシア改質土を適用	■浚渫土の
2. 発注者	千葉県漁業協同組合連合会、君津市、日本製鉄(株)	土粒子密度 (g/cm³)
3. 施工場所	千葉県君津市日本製鉄(株)東日本製鉄所西護岸沖	2.663
4. 施工時期	平成25年~令和3年(9ヶ年)※カルシア改質土施工時期:5月~8月	-
5. 施工数量	約420,000m ² (約480m×160m×最大厚さ5.8m)	
6.配合・材料	カルシア改質材混合割合: 容積混合率30% 使用土砂 : 近隣の浚渫土 カルシア改質材 : 粒径0-5mm日本製鉄(株)東日本製鉄所(君派	聿)製造
7 施丁方法	パックホウ混合・直接投入	

■ 浚渫土の物理特性					
土粒子密度	湿潤密度	自然含水比	液性限界	細粒分含有率	
(a/cm³)	(a/cm³)	(%)	(%)	(%)	

141.7

1.303

100						Market Work
	חל	ルシブ	776空	TAX O	19万千里	555-1/生

95.6

103.8

表乾密度 (g/cm³)	吸水率 (%)
3.08	4.18

■ 浅場の断面図 (平成 23 年施工区を例に)

沖側

祭堤

人工石

優砂

カルシア改質士

注) 水深は大潮の平均的な干潮面を基準としています (C.D.L)



施工状況

第四 7 水中盛土としての週間 19 図 18 | 西館港西防波堤背面盛土造成

| 8 中仕切堤築堤用材としての適用原例 新本牧ふ頭中仕切潜堤築造工事

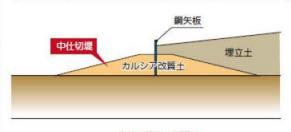
1.目的	新本牧ふ頭建設工事 カルシア改質土による中仕切潜堤築造 ■ 原料:	±
2. 発注者	横浜市港湾局 土粒子和 (g/cm	5.75
3. 施工場所	横浜市中区本牧ふ頭地先公有水面 2.7	1
4. 施工時期	令和3年1月~令和3年4月(2工事実施)	
5. 施工数量	カルシア改質土160,300m³	
6.配合・材料	カルシア改質材混合割合 : 容積混合率20% 浚渫土 : 床掘土(SCP盛上り土) カルシア改質材 : 日本製鉄(株)東日本製鉄所(君津) JFEスチール(株)東日本製鉄所(千葉))
7. 設計基準強度	q _{uox28} = 50kN/m²(現場強度), 現場/室内強度比=0.5, 不良率25%	
8. 施工方法	グラブ床掘・落下混合・グラブ投入	

土粒子密度 (g/cm³)	含水比 (%)	液性限界 (%)	塑性指数	細粒分含有率 (%)	強熱減量 (%)
2.71	54.7	36.5	13.3	25.4	4.5

■ カルシア改質材の物理特性(2工事平均値)

	表乾密度 (g/cm³)	吸水率 (%)	最大粒径 (mm)	f-CaO (%)
日本製鉄(株)	2.99	4.8	5	3.7
JFEスチール(株)	3.14	4.7	9.5	5.4

■ カルシア改質土の一軸圧縮強さとフロー (2工事平均、28日室内強度、室内設計強度131kN/m²)


平均密度	平均一軸圧縮強さ	不良率 (%)	フロー値
(g/cm³)	(kN/m²)		(cm)
1.84	629	4.4	2.7

カルシア落下混合船

平面図

中仕切堤部 断面図